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 Generative Artificial Intelligent models have emerged as powerful tools in various 
specialties, revolutionizing the landscape of image synthesis. In the medical field, 
Generative Adversarial Networks (GANs) have shown tremendous potential for 
addressing critical challenges and unlocking new opportunities for programmers. 
This review provides an overview of the applications of GANs for medical image 
synthesis for the human brain, through magnetic resonance imaging (MRI) and 
computed tomography (CT) images discussing their role in generating realistic and 
diverse medical images for training robust machine learning models. The review 
paper discusses the need for large, annotated datasets, the differences that can be 
influenced by the data being paired or unpaired, the quantity of the image data set, 
the usage of different types of GANs and other deep learning (DL) methods for the 
brain modality translation, and comparing the results of mean absolute error (MAE), 
peak signal-to-noise ratio (PSNR), and structural similarity index measure (SSIM) 
for papers from 2017 to 2023. 
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1. Introduction 

The emergence of synthetic images or image-to-image translation techniques in the medical field as a modern tool has led to 
competition among programmers, especially in techniques and methods based on artificial intelligence, such as machine learning 
and deep learning (DL), to create new medical services and applications. Since then, synthetic image methods or generative 
models have opened numerous avenues for addressing complex medical image analysis issues, including denoising, 
reconstruction, segmentation, data simulation, detection, and classification. Their capacity to generate highly realistic images 
raises the possibility of alleviating the persistent shortage of data. Examples of applications include enhancing the image quality 
of low-dose computed tomography (CT) scans and low-dose positron emission tomography (PET) scans, reconstructing CT 
images from multi-dimensional X-ray images, facilitating fusion processes for different imaging modalities, generating synthetic 
3T magnetic resonance imaging (MRI) from 1.5T images, and producing synthetic CT images from MRI images, or vice versa, 
for organs and body areas such as the brain, neck, spinal cord, chest, and hip.  

Many factors lead to the creation of synthetic images, such as cost reduction, minimization of waiting time, or the need for 
different imaging devices. To enhance the quality of images, especially when there is noise and artifacts in the images, low 
radiation doses, or limitations of devices. Needing to avoid using some devices due to their side effects. In addition, synthetic 
medical images generated to extract more information from images [1], [2].   

Programmers compete to design the best generative model for creating synthetic medical images to achieve accurate and realistic 
output in the minimum possible time. To achieve this, the model must meet the following two criteria at the implementation 
stages: 

1.1. Selection Of the Optimal Dataset:  

 The primary role of the data is to build the model so that the limits of the model are represented by the data it is trained on, and 
the more high-quality datasets it trains on, the higher quality and realistic it is given. Data are described with simple details, such 
as the number of patients, their ages, gender, general health conditions, date, type of imaging, and size of the image. The dataset 
collection was performed in two ways. The first way is to collect data manually from hospitals and medical diagnostic imaging 
centers. Second, data can be collected from image datasets on websites such as The Cancer Imaging Archive (TCIA), FreeSurfer 
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(software suite), and OpenNEURO. Also, some projects have combined these two methods when collecting data to obtain the 
most information possible. In addition, paired datasets are always preferred over unpaired datasets, as they help in predicting 
synthetic images based on real data on which the model was based, Figure 1 defines the difference between data types. Increasing 
the training dataset can be a good choice through augmentation under conditions and limits to avoid fitting model problems. 

 
Figure 1. Figure shows the difference between each paired and unpaired dataset for the brain region, images from the Institutional Review Board (IRB) [3]. 

1.2.  Choosing Model Technique: 

 Choosing a DL model that fits the data well and produces reliable predictions is considered the most important part because it 
depends on the programmer's skills and the information he possesses. DL model examples, such as generative adversarial network 
(GAN/GANs) and their models that extend on it, like pixel-to-pixel (pix2pix) (where generator depend on U-Net and discriminator 
use PatchGAN)[4], conditional or controllable generative adversarial network (cGAN) (which is extends on classing the input 
labels) [5], deep convolutional generative adversarial network (DCGAN) (extends on CNN architecture), or models that scale up 
GANs architecture, such as Wasserstein generative adversarial network (WGAN) (discriminator training on data at less time than 
generator, by enhancing loss function) [6], CycleGAN (a generative model that translates images from source to target) [7],[8],[6]. 
Anyone who works on GANs has two main components. The first part is called the generator (G) which learns to generate new 
random data. The second part called the discriminator (D) learns to classify the generator's fake and real data, those processes or 
game between D and G rebate in this time generator is updating from impact of the loss function, until the discriminator can’t be 
able to distinguish fake data. The target of any generative model is to provide the best measurable results and outcomes closest to 
realism. Alternatively, a new model is designed based on the previously mentioned methods by changing the nature of both 
generator and discriminator with an increasing number of the model’s layers and functions, enhancing the model's loss function 
of generator and discriminator. 
 In this paper, we discuss 30 papers and articles that we reviewed about synthetic CT images based on MRI images and synthetic 
MRI images based on CT images of the human brain. Our exploration uncovered several compelling reasons that drive the creation 
of synthetic brain images utilizing CT and MRI. The common reasons for generating synthetic brain images using CT and MRI 
include the elimination of risks associated with ionizing radiation from CT scans, reduction in both time and financial resources 
required for multiple different imaging methods, obtaining advantages tailored to each imaging modality, such as imaging soft 
tissues for MRI and bones for CT scans, and the risks of using each of them for some medical conditions [9]. We discuss these 
reasons in detail in the medical background, as mentioned in previous papers and articles. 

2. Background 

 From Figure 2, synthetic medical imaging projects with an average of three to four brain applications are created each year, 
with the creation of synthetic CT images clearly superior to MRI. We also think that the reason for this may be related to the 
difficulty of conversion to MRI or not taking into consideration the reason for the unavailability of the device in some poor 
countries and focusing on reducing the radiation risk only. It was also noted that there are few projects on converting CT images 
to MRI images.  
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Figure 2. Shows the distribution and percentages of 30 research papers in the field of synthetic medical images for the brain over the past few years. 21 

papers from CT to MRI, five papers from MRI to CT, and four papers that apply both modalities. Peak productivity was in 2019 and 2020, when a total of 
seven papers and articles were published. 

2.1.  Medical Background 

 The medical purposes that call for a synthetic CT or MRI procedure are common in most papers. Common reasons for synthetic 
medical images include eliminating risk, reducing cost, and reducing waiting time. One of the primary reasons for generating 
synthetic CT images from MRI data is to remove the risk of ionizing radiation [9], CT images are suitable for bony structure [10], 
and provide electron density information [11], [12]. For MRI synthesis from CT images, CT scans are used as an initial evaluation 
because of their lower price and faster use; however, MRI is highly contrast and accurate in the diagnosis of diseases such as 
cancer and stroke [13], [14]. Hospitals in remote rural areas may not have MRI machines [15]. MRI has a higher cost than CT 
scans in imaging sessions, and individuals with metal implants, strips [3], or pacemakers may be unable to safely use MRI because 
of its magnetic nature.  

2.2.  Software Background 

 The most widely used methods for brain image translation are pix2pix, cGAN, CycleGAN, DCGAN, and U-Net. Spatial papers 
and articles focused on forming new structures or combining convolutional layers to achieve the best results. Let's take two 
examples to illustrate this point about the changing on CycleGAN loss function: 
 

Lcycle (G, F) =  Ex~pdata(x)��G(x)� −  x� 1 +  Ey~pdata(y)�G�F(y)� −  y�1 

LDC-cycle (G,F,DX,DY) = LGAN(G,DY,X,Y) +  LGAN(F,DX,Y,X) + αLcycle(G,F) [7] 

 
dual contrast CycleGAN (DC-cycleGAN), which is used to synthesize MRI images from CT and vice versa with two generators 
and two Discriminators like CycleGAN and consist of DC loss. DC-cycleGAN loss function: 

 𝐿𝐿𝐷𝐷𝐷𝐷−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐺𝐺,𝐹𝐹,𝐷𝐷𝑋𝑋,𝐷𝐷𝐷𝐷)  =  𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺(𝐺𝐺,𝐷𝐷𝑌𝑌 ,𝑋𝑋,𝑌𝑌) + 𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺(𝐹𝐹,𝐷𝐷𝑋𝑋,𝑌𝑌,𝑋𝑋) + 𝛽𝛽𝐿𝐿𝐷𝐷𝐷𝐷(𝐷𝐷𝑌𝑌 ,𝑋𝑋,𝑌𝑌) + 𝛽𝛽𝐿𝐿𝐷𝐷𝐷𝐷(𝐷𝐷𝑋𝑋,𝑌𝑌,𝑋𝑋) + 𝛼𝛼𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐺𝐺,𝐹𝐹) 
𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐺𝐺,𝐹𝐹)  =  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (𝐹𝐹(𝐺𝐺(𝑥𝑥)), 𝑥𝑥) +  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝐹𝐹�𝐺𝐺(𝑦𝑦)�,𝑦𝑦) 

Where β and α control the equation weight, the method achieves better results than cycleGAN, where the results for MRI synthesis are MAE = 
0.04559, PSNR = 26.68858, and SSIM = 0.82622 for the DC-cycleGAN model, and MAE = 0.09155, PSNR = 20.63825, and SSIM = 0.71670 
for the ordinary cycleGAN model [16]. Also, DC-cycleGAN achieves higher results than CT synthetic. 

sc-cycleGAN, which was developed for unpaired synthetic CT images from MRI, was a model developed with two generators, 
GCT and GMR, and two discriminators, DCT and DMR. This method aims to provide better results. The CycleGAN loss function for 
this model is:  𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  (𝐺𝐺𝐶𝐶𝐶𝐶 ,𝐺𝐺𝑀𝑀𝑀𝑀) = |𝐺𝐺𝐶𝐶𝐶𝐶(𝐺𝐺𝑀𝑀𝑀𝑀(𝐼𝐼𝐶𝐶𝐶𝐶)) − 𝐼𝐼𝐶𝐶𝐶𝐶|1 + |𝐺𝐺𝑀𝑀𝑀𝑀(𝐺𝐺𝐶𝐶𝐶𝐶(𝐼𝐼𝑀𝑀𝑀𝑀)) − 𝐼𝐼𝑀𝑀𝑀𝑀|1 and sc-cycleGAN loss function: 

𝐿𝐿(𝐺𝐺𝐶𝐶𝐶𝐶 ,𝐺𝐺𝑀𝑀𝑀𝑀 ,𝐷𝐷𝐶𝐶𝐶𝐶 ,𝐷𝐷𝑀𝑀𝑀𝑀) = 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎(𝐺𝐺𝐶𝐶𝐶𝐶 ,𝐷𝐷𝐶𝐶𝐶𝐶) + 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎(𝐺𝐺𝑀𝑀𝑀𝑀 ,𝐷𝐷𝑀𝑀𝑀𝑀) + 𝜆𝜆1𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝐺𝐺𝐶𝐶𝐶𝐶 ,𝐺𝐺𝑀𝑀𝑀𝑀) + 𝜆𝜆2𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝐺𝐺𝐶𝐶𝐶𝐶  ,𝐺𝐺𝑀𝑀𝑀𝑀) 

Where: 𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎(𝐺𝐺𝐶𝐶𝐶𝐶 ,𝐷𝐷𝐶𝐶𝐶𝐶) = 𝐷𝐷𝐶𝐶𝐶𝐶(𝐺𝐺𝐶𝐶𝐶𝐶(𝐼𝐼𝑀𝑀𝑀𝑀))2 + (1 − 𝐷𝐷𝐶𝐶𝐶𝐶(𝐼𝐼𝐶𝐶𝐶𝐶))2 and  Ladv(GMR , DMR)  =  DMR(GMR(ICT))1  (1 −
 DMR(IMR))2 results that sc-cycleGAN achieves compared to cycleGAN MAE = 127.59, PSNR = 24.41, and SSIM = 0.773 to 
MAE = 143.78, PSNR = 23.73, and SSIM = 0.558 [11]. 
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 There are also other examples of improvement models not CycleGAN, like Auto-GAN implemented by an autoencoder network 
and GAN generator [17], MCMP-GAN with five layers consisting of convolutional levels based on U-Net connect with generator 
and based on the DCGAN method of producing synthetic images [18], and JP-DAM-GAN (jigsaw puzzle- Discriminating 
Attenuated model- Generative Adversarial Networks) where that model is based on the pix2pix method to convert between MRI 
modalities [19]. 

3. Results and Discussion 

 Every generative model must evaluate and analyze its performance and efficiency, which can be achieved by visual inspection 
by radiologists or specialized doctors and can also be achieved mathematically using equations and metrics for synthetic images. 

3.1.  Mathematical Evaluation Metrics 

 Evaluation of a synthetic image model performance can be achieved by applying measurement metrics as quantitative indicators 
of the results. Commonly used equations include mean absolute error (MAE) (1), mean square error (MSE) (2), peak signal-to-
noise ratio (PSNR) (3), and structural similarity index measure (SSIM) (4). There are also equations such as dice similarity 
coefficient (DSC) (5), root mean square error (RMSE) (6), relative global error (ERGAS) (7), universal quality index (UQI) (8), 
and spatial correlation coefficient (SCC) (9). 
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 Error metrics: MAE, MSE, and RMSE. where MAE is used to measure the average distance between the values of synthetic 
image I and the actual image 𝐈̌𝐈 (1), 𝐢𝐢 and 𝐣𝐣 refers to the index on the image pixels, N and M refer to dimensions (x, y) of the image, 
where MSE is similar to MAE but different, the MSE equation calculates the square of average differences, RMSE the root main 
square for MSE, smaller distance identify smaller error in the results. PSNR (4) is used for evaluating the quality of reconstructed 
or generated images; MAX refer to the maximum possible pixel value of the image (for example, 255 for 8-bit images( 𝟐𝟐𝐧𝐧 − 𝟏𝟏 )). 
SSIM or SSI (5) is used for evaluating the quality of images by measuring the structural similarity between a reference image and 
a synthetic image, where I refers to the synthetic image and 𝐈̌𝐈  refers to an actual image, average or mean (µ), standard division 
(𝛔𝛔), C1 = (K1L)2 and C2 = (K2L)2 where L = MAX value and K1 = 0.01 and K2 = 0.02. By default, the SSIM index ranges from -1 
to 1, where 1 indicates perfect similarity between the images, higher SSIM values suggest higher perceived image quality. The 
DSC (6) is commonly used to measure specific tissue between synthetic and actual images with ranges from 0 to 1. When the 
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result is close to one, it is close to being the same as the actual image, where A represents the pixels in the predicted mask and B 
represents the pixels in the ground truth mask. ERGAS (7) was used to measure the quality between synthetic and actual image, 
where �𝐑𝐑𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 𝐂𝐂𝐂𝐂 𝐑𝐑𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚𝐚 𝐂𝐂𝐂𝐂⁄ � define spatial resolution ratio between the synthesized and actual image. UQI (8) has the same 
function as the SSIM equation, but it aims to capture both local and global image characteristics, where the output value is between 
1 and -1. SCC (9), also known as the spatial correlation index, measures the similarity in spatial patterns between images, and the 
results range between 1 and -1 [1], [20]. 

3.2.  Discussion And Comparison  

From Table 1, Table 2, and Table 3, provide an overview of the modalities of CT and MRI, the methodologies employed, and the 
corresponding results. The literature surveyed in these tables’ spans from 2017 to 2023, with a notable surge in brain-related 
publications from 2019 as mentioned in the Figure 2, indicating a growing interest in and advancements in the field. The keywords 
used in the search for these papers were GAN, brain CT to MRI, MRI to CT, and synthesis medical images through Google 
Scholar and the Egyptian Knowledge Bank (EKB). During the search process, we received to number over fifty papers and 
publications. After careful consideration, we excluded the ones that did not specialize in the brain and head region and 
Anonymous, as well as those that were published before 2017. In this section, we will provide a comprehensive review and 
commentary on select papers and articles that we found particularly interesting. In this part of the paper's discussion, the focus 
will be on the most important observations rather than on all the papers. The previous three comparison tables will be used to 
summarize everything mentioned earlier in the paper. 

TABLE 1 
Overview of papers on CT synthesis from MRI (MRI→ CT) for brain images, results focused on MAE, PSNSR, and SSIM, table sorted by 
publication date. 

 Data 
Quantity 

Data 
Type DL model Best Results Highlights References & 

Date 

1 270 
patients Paired 3D pix2pix GAN MAE = 74.28 providing accurate synthetic 

CT images 
Bowen Xin, 
[12] (2023) 

2 50 patients Paired Nine CycleGAN 
models 

Model with GAN + L1 and ResNet_3 
generator structure is the better with PSNR = 

28.76 & SSIM = 0.90 

CT synthesis to minimize 
exposure to cancer radiation 

therapy 

Dr. Teodor 
Stanescu [20] 

(2023) 

3 95 patients Unpaire
d pix2pix (cGAN) 

T1wGd has the best results of 
MAE = 69.6 ± 12.2 for RC & 71.0 ± 12.2 for 

LC 

give a good identification 
for the effect of using a 

different set of MRI images 

Lotte Nijskens 
[21] (2023) 

4 26 cancer 
patients Paired WGAN MAE = 48.39, PSNR = 31.09,  

& SSIM = 0.9265 dB 
Target to eliminate the side 

effects of radiation 
Jiffy Joseph 
[22] (2022) 

5 ----- Unpaire
d CycleGAN ----- 

This paper focuses on 
explaining how synthetic 

image is done 

Dalal Rajni 
Rajnish, [9] 

(2022) 

6 50 patients Paired Pix2pix cGAN PSNR = 29.47 
providing a solution for 
generating synthetic CT 

images 

Chun-Chieh 
Wang, [23] 

(2022) 

7 41 patients Paired U-Net, U-Net++, 
& Pix2Pix 

U-Net++ model is better 
 MAE = 0.082 PSNR = 67.9 

U-Net++ Modified method 
from U-Net 

Longfei 
Zhoua [24] 

(2021) 

8 86 patients Paired ResNet, & GAN ResNet MAE = 114.1±27.5  
GAN MAE = 161.3±38.1 

Target is to eliminate 
concerns about using CT 

Faeze 
Gholamiankha
h [25] (2021) 

9 45 patients Unpaire
d sc-cycleGAN MAE = 127.59, PSNR = 24.41,  

& SSIM = 0.773 

The paper tried to generate 
new cycleGAN model and 

compare it with other 
Previous attempts 

Heran Yang 
[11] (2020) 

10 60 patients Paired cGAN (MAE) = 61 ± 14 

development of more 
effective synthetic for 

pediatric radiation therapy 
planning 

Matteo 
Maspero [26] 

(2020) 

11 37 patients Paired U-Net MAE = 60.52 ± 13.32 & PSNR = 49.23 ± 1.92 
eliminating the need for CT 
scanning in the radiotherapy 

workflow 

Bin Tang [27] 
(2020) 

12 32 patients Paired  
MCMP-GAN 

MAE = 75.7 ± 14.6, SSIM = 0.92 ± 0.02, & 
PSNR = 29.1 ± 1.6 

generating accurate pseudo-
CT images from multi-

parametric MRI for 
nasopharyngeal carcinoma 

(NPC) patients 

Xin Tie [18] 
(2020) 



 Ahmed S. El-Hossiny et al./ Deep Learning-Based Synthetic Brain Images from CT/MRI Data: A Review 

 

 Data 
Quantity 

Data 
Type DL model Best Results Highlights References & 

Date 

13 45 patients Unpaire
d cGAN 

Best results with four channel cGAN 
MAE = 69.98 ± 12.02, SSIM = 0.85 ± 0.03, & 

PSNR = 29.39 ± 1.29 

Compare between U-Net 
and cGAN and give a good 
identification for effect of 
use a different set of MRI 

images 

Mengke Qi 
[28] (2020) 

14 16 patients Paired Auto-GAN SSIM = 0.9592 Auto-GAN is a multi-
modality method 

Bing Cao [17] 
(2020) 

15 222 images Paired UC-GAN MAE = 76.7 ± 4.5 & PSNR = 46.1 ± 1.5 Paper compares UC-GAN 
with cycleGAN 

Haitao Wu1 
[29] (2019) 

16 42 patients Paired Pix2pix (cGAN) MAEBody = 87 ± 11 of 2D sCT Generation Work on 2D and 3D sCT 
Mariana 

Ferreira [30] 
(2019) 

17 60 patients Paired Pix2pix, U-Net, 
& context-aware 

Pix2pix achieved the best results: 
MAE = 136.9 & PSNR = 46.77 

Target to reduce the need for 
CT scans 

Bodo Kaiser 
[31] (2019) 

18 24 patients Paired CycleGAN MAE = 55.7 & PSNR = 26.6 
based on dense cycle-
consistent generative 
adversarial networks 

Yang Lei [32] 
(2019) 

19 15 patients Paired cGAN Average MAE= 89.30±10.25, SSIM = 
0.83±0.03, & PSNR= 26.64±1.17 

Target to generating 
synthetic CT images 

Hajar Emami 
[33] (2018) 

20 18 patients Paired DCNN MAE = 84.8 HU DCNN model near U-net 
architecture 

Xiao Han [34] 
(2017) 

21 24 patients 
Paired & 
Unpaire

d 
CycleGAN 

Unpaired: MAE = 73.7 ± 2.3 & PSNR = 32.3 
± 0.7, 

Paired: MAE = 89.4 ± 6.8 & PSNR = 30.6 
±0.9 

Target to synthesize quality 
CT without using Unpaired 

data 

Jelmer M. 
Wolterink 

[35] (2017) 

 

TABLE 2 
 Overview of papers on MRI synthesis from CT (CT→ MRI) for brain images, results focused on MAE, PSNSR, and SSIM, table sorted by publication date. 

 Data 
Quantity 

Data 
Type DL model Best Results Highlights References & 

Date 

1 181 patients Paired 

Eight models: 
UNet V1, V2, 
Patch, 2D, ++, 

Attention, 
Transformer, & 

CycleGAN 

U-Net better results with MAE = 18.29 ± 6.61, 
PSNR = 21.571 ± 2.724, & SSIM = 0.882 ± 

0.030 

The paper test U-Net models 
and compares them with the 

original structures. 

Jake 
McNaughton 
[14] (2023) 

2 26 patients Paired pix2pix PSNR = 24.30, & SSIM = 0.857 Diagnosing strokes Na Hu1 [15] 
(2022) 

3 ------ ------ 

U-Net with loses 
functions 

models, Pix2Pix, 
& CycleGAN 

U-Net, with L1+L2, achieved the best results: 
MAE = 74.19, PSNR = 32.44, and SSIM = 

0.9440 

Comparison between 
methods to find best model 

Wen Li [13] 
(2020) 

4 202 patients Paired & 
unpaired MRI-GAN 

Paired: MAE =20.34, PSNR =64.28, & SSIM 
=0.24 Unpaired: MAE =22.94, PSNR =63.77, 

& SSIM =0.22 
 

MRI-GAN has similar 
structure to cycleGAN 

Cheng-Bin Jin 
[3] (2019) 

5 94 patients paired cGAN  ----- Results measured by FCN 
values. 

Jonathan Rubin 
[36] (2019) 

 
 

TABLE 3 
Overview of both modality (CT↔ MRI) papers of data, model and results measured by MAE, PSNSR, and SSIM equations, table sorted by publication date. 

 Data 
Quantity 

Data 
Type DL model Best Results Highlights References & 

Date 

1 
367 images 

of CT & 
MRI 

Paired ADC-cycleGAN 

MRI to CT synthesis: MAE = 0.11005, PSNR 
= 19.04385, SSIM = 0.68551 

CT to MRI synthesis: MAE = 0.11080, PSNR 
= 20.12068, SSIM = 0.65568 

Target to high-quality image 
synthesis 

Jiayuan Wang 
[10] (2023) 

2 ----- Unpaired DC-cycleGAN MAE = 0.04559, PSNR = 26.68858, & SSIM 
= 0.82622 

contain code resources and 
comparison with other 

models 

Jiayuan Wang 
[16] (2022) 
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 Data 
Quantity 

Data 
Type DL model Best Results Highlights References & 

Date 

3 

367 paired 
& 840 

unpaired 
images 

Paired & 
unpaired uagGAN 

Results of paired–unpaired uagGAN models: 
MRI to CT synthesis: PSNR = 34.786, SSIM = 

0.739 
CT to MRI synthesis: PSNR = 31.821, SSIM = 

0.603 

Overcoming the challenges 
that face the paired and 
unpaired methods by 

creating a new paired-
unpaired method 

Alaa Abu-
Srhana [37] 

(2021) 

4 78 patients Unpaired DualGAN 

CT to MRI synthesis:  
MAE = 60.83, PSNR = 17.21, & SSIM = 0.8 

CT to MRI synthesis:  
MAE = 37.99, PSNR = 23.31, & SSIM = 0.78 

Target to get best result 
from DualGAN 

Denis 
Prokopenko 
[38] (2019) 

 

3.2.1. MRI TO CT  

From Table 1, we can note that paper No. 4 achieved the best measurable values on all the following: SSIM, PSNR, and MAE. 
In their study, they used a dataset from the MVR Cancer Center in the DICOM format. Challenges still need to be solved. 
Paper hinted at it: masking the CT images to filter the noises still has some imperfections due to the CT and MRI differences 
in data nature. Papers number (No.) 8, 9, and 17 achieved poor numerical results in terms of MAE compared to the rest of the 
papers. Paper 8 explained that the reason for these limitations was that they worked on one type of data and that the performance 
of their project could be measured by comparing it with methods such as U-Net. For paper No. 9, their focus was on creating 
a research paper that would overcome CycleGAN and provide visual inspections. That was mentioned in detail in the 
“SOFTWARE BACKGROUND” paragraph. They succeeded in their development compared to the ordinary CycleGAN 
model, but they were not able to achieve high MAE values because of the nature and quality of the training data used. Paper 
No. 17 achieved reliable results compared with the rest of the models, and they explained their limitations because of the lack 
of data used. Not all measurements are decisive for deciding about the quality of the model, and visual inspection is a major 
part of the decision. Why? Because the model's ability to notice small-sized problems, such as tumors and clots, elevates it to 
the point of reliability, Paper No. 21 represents the effect of using paired and unpaired data mathematically with the CycleGAN 
model, where the unpaired data achieves better results with the mode due to its nature of dealing with unpaired data. Paper No. 
13 helped us to obtain a good idea about the effects of MRI image sequences (T1, T2, T1C, and T1DixonC-water) by applying 
the cGAN with a 4-channels model to obtain results, which showed that T1 is the best, followed by T1C, T2, and T1DixonC-
water they achieve disparity results. 

3.2.2. CT TO MRI 

 Noted that from Table 2 and Table 3 for synthesis MRI images, synthetic MRI does not achieve high-quality image 
measurements (PSNR, SSIM). The only paper that achieves high image quality was Paper No. 1 and 3 from Table 2, where 
this paper compares many models to show that the best model, model U-Net (ordinary U-Net), achieved good results over 
other modifications. U-Net models and ordinary CycleGAN, and the models U-Net_L1+L2 and paired-cycleGAN from paper 
No. 3 achieved higher results and good visual inspection. From the previous comparisons, it can be concluded that the U-Net 
models and their improvements achieved the best results in terms of quality and error rate compared to other models. The main 
reason for the few papers dealing with the synthesis of MRI images from CT is that MRI images contain many details that CT 
images may fail to capture, which subsequently leads to deficiencies in the synthesis of images. This sensitivity, especially in 
critical medical decisions like detecting tumors and strokes in brain regions, necessitates heightened efforts and benefits from 
early diagnostic capabilities. 

 
 
 
 Across all tables, it is noted that the amount of patient data used increases over time, publishing data for researchers, 

especially after the coronavirus disease (COVID-19), and we cannot ignore the effect of data on the results, as in some papers, 
the models achieved results, and the same models achieved lower or higher results in other papers related to the dataset used 
in building the generative model. 

 
 



 Ahmed S. El-Hossiny et al./ Deep Learning-Based Synthetic Brain Images from CT/MRI Data: A Review 

 

3.3.  Summary  

 The main points noted from papers and articles from the last tables can be summarized as follows. A model’s results do 
not refer to the method's performance; they express the overall model and the data on which it was trained. You cannot show 
the method's performance until you compare it with other methods with the same input data. Emphasizing the importance of 
visual inspection for output images from the model. Using unpaired data with the CycleGAN model achieves higher results 
than paired data. Increasing the volume of data has a positive effect on the model's strong predictive ability, with unpaired data 
achieving better results. MRI T1 data has shown remarkable superiority and usage in MRI-to-CT translation. U-Net and its 
variations or GANs model upgrades like Pix2Pix generator, outperform other models in terms of quality and error rate in CT-
to-MRI translation. 

4. Conclusion 

 There are still challenges to synthetic medical images spatially with brain synthesis, for example, differences in data nature 
and complexity between CT and MRI images, which create limitations on MRI synthesis from CT images. Also, a limitation 
in accessibility to high-quality and paired data. Solving these problems well led to achieving higher results and reliability in 
this type of project. The review paper also provides a comprehensive overview of the advancements in creating synthetic MRI-
CT images for the brain using generative models. The paper discusses the applications of synthetic CT based on MRI and 
synthetic MRI based on CT for the human brain, highlighting the potential benefits such as cost-effectiveness, and improved 
imaging quality. We also emphasize the importance of selecting the optimal dataset and choosing the most suitable DL model 
for generating reliable predictions. The review paper focused on the challenges and limitations in this field, such as the scarcity 
of projects for converting CT images to MRI images and the difficulty of conversion to MRI. The review also mentioned the 
computational aspect of models and their types. Overall, the review paper provides valuable insights into the current state and 
prospects of synthetic MRI-CT imaging for brain applications, offering a foundation for further research and development in 
this area. 
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